REVISION OF nido-2,6- $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$ TO THE arachno-4,5- $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ STRUCTURE. DETERMINATION OF THE STRUCTURE FROM NMR SPECTRA AND CHEMICAL ORIGIN

Stanislav Heřmánek, Tomáś Jelínek, Jaromír Plešek, Bohumil Štíbr and Jiří Fusek

Institute of Inorganic Chemistry, Czechoslovak Academy of Sciences, 25068 Řež near Prague

Received November 4th, 1987
Accepted February 18th, 1988

Dedicated to the memory of Dr Karel Blaha.

The asymmetric $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane held untill the present for $2,6-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$, is in reality the arachno-$-4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ carborane (I) with two adjacent $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridges, one BH_{2}, one CH_{2} and one CH group in the hexagonal open-face. The arrangement of the boron network was determined on the basis of the ${ }^{14} \mathrm{~B},{ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ COSY, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and on the $T_{1}(\mathrm{~B})$ study. The connection of B - with C -skeletal atoms was deduced from the positions of deuterium in the deutero analogs prepared by the $\mathrm{CH}_{2} \mathrm{O} / \mathrm{D}_{3} \mathrm{O}^{+}$degradation of three selectively deuterated nido- $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}$anions. A selective transmission of D from $\mathrm{CD}_{2} \mathrm{O}$ to the $\mathrm{B}(9)$ vertex in the course of the $\mathrm{CD}_{2} \mathrm{O} / \mathrm{D}_{3} \mathrm{O}^{+}$degradation was observed. The structure of arachno-4,5-$-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ is consistent with the different pathways of its preparation.

In 1971, Rietz and Schaeffer ${ }^{1-3}$ described the incorporation of acetylene and dimethylacetylene into $\mathrm{B}_{8} \mathrm{H}_{12}$. In these reactions, besides the nido- $\mathrm{C}_{2} \mathrm{~B}_{8}$ carboranes, degradation $\mathrm{C}_{2} \mathrm{~B}_{7}$ products were also isolated. The structure of the dimethyl derivative was proved ${ }^{4}$ by the single crystal X-ray diffraction study to be $1,2-\left(\mathrm{CH}_{3}\right)_{2}-1,2-$ $-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}$ (II).

On the other hand, the structure of the glassy; non-methylated $C_{2} B_{7}$ species had to be solved by spectral methods only. Mass spectroscopy was found to be useless, showing fragmentation to several compounds ${ }^{1,3}$. The first proposal of its structure was therefore based on the NMR characteristics only: the published ${ }^{1} \mathrm{H}$ NMR spectrum $(220 \mathrm{MHz})$ in CS_{2} was interpreted ${ }^{1,3}$ as composed of a total of eleven hydrogens, namely of two relatively narrow CH signals of intensity one at 2.81 and 1.95 ppm , and of one $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge at -0.87 ppm , superimposed by eight broad and low $H B$ quartets. The number of boron atoms was deduced ${ }^{1,3}$ from the ${ }^{11} \mathrm{~B}$ NMR spectrum at 70.6 MHz which showed six BH doublets and one BH_{2} triplet (Table I). On the basis of these data, the $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$ formula was estimated and the nido structure $I I I$ with a hexagonal face was proposed ${ }^{1,3}$.

Shortly after this, we reinterpreted the ${ }^{11} \mathrm{~B}$ NMR spectrum as favoring the nidostructure $I V$ with two C -atoms in the pentagonal face ${ }^{5}$. The structure $I V$ was consistent with the absence of an H -tautomerism between BH_{2} and $\mathrm{B}-\mathrm{H}-\mathrm{B}$, as well as with the geometrical arrangement of the skeletons, belonging to nine-vertex nido compounds according to the Williams' systematization ${ }^{6}$. Moreover, the nido--character and the $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$ formula seemed to be confirmed by the detailed mass spectral study in which $\left(\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}\right)^{+}$was the highest ion observed ${ }^{7}$. The nido character of the $\mathrm{C}_{2} \mathrm{~B}_{7}$ species was also inferred by the structure of the analogously obtained dimethyl isomer II (ref. ${ }^{4}$).

1

III

II

IV
$\bigcirc \mathrm{OH} \mathrm{CH} \mathrm{C}$

Isolation of the $\mathrm{C}_{2} \mathrm{~B}_{7}$ species from the mixture resulting from the oxidative degradation of the $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}$anion ${ }^{7}$ and, especially its direct preparation in almost 60% yield with an acid degradation of this anion in the presence of formaldehyde ${ }^{8.9}$, made the title compound one of the best accessible open-face dicarbaboranes. Its utility was illustrated by the preparation of a whole series of metallaboranes ${ }^{8,10-12}$. In all these papers, the nido character of the starting $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane was considered.

The structure of the discussed $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane, which incluted a BH_{2} vertex, was exceptional among nido skeletons from the point of view of the Williams' system-

[^0]atization ${ }^{6}$. Attempts to solve it by the X-ray diffraction analysis failed ${ }^{3}$ and asymmetry within skeleton precluded an unambiguous interpretation of the conventional ${ }^{11} \mathrm{~B}$ NMR spectra. The ability of the ${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ two dimmensional NMR spectroscopy ${ }^{13-16}$ to show mutual $\mathrm{B}-\mathrm{B}$ connections within cluster framework, prompted us to study the $\mathrm{C}_{2} \mathrm{~B}_{7}$ species by this method.

RESULTS AND DISCUSSION

A detailed ${ }^{11} \mathrm{~B}$ NMR study of the $\mathrm{C}_{2} \mathrm{~B}_{7}$ species, analysing selected spectra (Fig. 1), has indicated six doublets $A-E, G$ and one BH_{2} triplet F of equal intensities (see Table I). The boron atoms, associated with the ${ }^{11} \mathrm{~B}$ signals A and B , must lie on the edge of the open framework, due to $\mu \mathrm{H}$ bridge splitting of their signals (cf. Figs $1 a, 1 d$ and their line-narrowed counterparts $1 b, 1 e$). The $\mu \mathrm{H}$ splitting was confirmed by the $\mu \mathrm{H}$ selectively decoupled ${ }^{11} \mathrm{~B}$ spectrum (Fig. 1c) which shows a narrowing of the A and B signals when compared with the undecoupled ${ }^{11} B$ NMR spectrum (Fig. 1a). The BH_{2} vertex must also be located in the open face, as its signal F is split to a triplet. The discussed ${ }^{11}$ B NMR spectra (Fig. $1 a-1 e$) seemed to be consistent with the pentagonal nido skeleton $I V$ in which an H-tautomerism was improbable and the existence of an unusual BH_{2} group was compelled.

Table I
Assignments of the ${ }^{11} \mathrm{~B}$ NMR signals for $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13-\mathrm{x}} \mathrm{D}_{\mathrm{x}} I a-I f: \delta_{\mathrm{B}} \pm 0.05 \mathrm{ppm}, J\left({ }^{11} \mathrm{~B} / \mu \mathrm{H}\right)$ in $\mathrm{Hz},\left[T_{1}\right]$ in ms

Compound	$\mathrm{A}: \mathrm{B}(7)$	$\mathrm{B}: \mathrm{B}(9)$	$\mathrm{C}: \mathrm{B}(8)$	$\mathrm{D}: \mathrm{B}(1)$	$\mathrm{E}: \mathrm{B}(2)$	$\mathrm{F}: \mathrm{B}(6)$	$\mathrm{G}: \mathrm{B}(3)$
$I a$	9.91	3.85	-3.76	-4.57	-6.31	-30.07^{a}	-56.65
	$(154 / 30)$	$(159 / 46)$	(142)	(161)	(155)	(124)	(158)
	$[19.7]$	$[21.2]$	$[23.8]$	$[22.8]$	$[32.6]$	$[26.0]$	$[81.3]$
$I b$	9.85	3.77	-4.26	-4.80	-6.43	-30.18	-56.77
	$(-)$	$(157 /-)$	$(-)$	(175)	(157)	(123)	$(-)$
$I c$	9.65	3.49	-4.12	-4.74	-6.56	-30.21	-56.85
	$(150 /-)$	$(160 /-)$	$(140 /-)$	(168)	(145)	$(-)$	(154)
$I d$	9.57	3.45	-4.12	-4.86	-6.37	-30.29	-56.96
	$(-)$	$(159 /-)$	$(-)$	(170)	(155)	$(-)$	$(-)$
$I e$	9.72	3.70	-4.09	-4.79	-6.29	-30.13	-56.82
	$\left(152 /-{ }^{b}\right)$	$(159 /-)$	$(147 /-)$	(176)	(155)	$\left(126^{c}\right)$	(154)
$I f$	9.51	3.51	-3.71	-4.68	-6.33	-30.32	-56.90
	$(-)$	$(-)$	$(-)$	(167)	(155)	$(-)$	$(-)$

Triplet; ${ }^{b}$ influenced by a $\mu \mathrm{D}$ coupling; ${ }^{c}$ multiplet, a result of a partial endo deuteration.

The mutual connections of boron atoms in the $\mathrm{C}_{2} \mathrm{~B}_{7}$ skeleton and the assignment of their ${ }^{11} \mathrm{~B}$ signals followed from the ${ }^{11} \mathrm{~B}$ COSY 2D spectrum (Fig. 2) in which nine cross-peaks were found. On the presumption of the presence of only one $B-H-B$ bridge ${ }^{1,3}$, i.e. of the bonding proximity of A and B atoms due to their $\mu \mathrm{H}$ splitting, the boron network as in $I V$ (see Scheme 1) was deduced.

The uncertainity of the presence of two remaining cross-peaks between $C-E$ and $\mathrm{C}-\mathrm{D}$ signals was comprehensible due to a considerable proximity of the $\mathrm{C}, \mathrm{D}, \mathrm{E}$ signals (see Fig. 1).

The assignment of the signal G was in agreement with our NMR empirical Rule 1 which states that the boron atom opposite to the H -bridge resonates in the highest part of the given ${ }^{11} \mathrm{~B}$ NMR spectrum ${ }^{16-18}$. Similarly, a distinct $\mu \mathrm{H}$ splitting of the signal B was in accord with our earlier empirical $\mu \mathrm{H}$ rule stating that boron atoms adjacent to a skeletal carbon atom or bearing a classical two electron bond are significantly $\mu \mathrm{H}$ split ${ }^{19}$.

While the boron network, constructed on the basis of the ${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ interactions, corresponded to the appropriate part of the IV skeleton, evidence of the C-B connections was still missing.

The formation of the asymmetrical $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane from the o-carborane (Va) through the $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}$intermediate (VIa), followed by its $\mathrm{CH}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}$ degradation (refs ${ }^{8,9}$) indicated that the 3,4 and 8 boron atoms were removed step-

Fig. 1
${ }^{11} \mathrm{~B}$ NMR spectra of $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ in CDCl_{3} at $64 \cdot 184 \mathrm{HMz}$. a Undecoupled; b undecoupled, line narrowed (very strong and sharp signal F omitted); $\subset \mu \mathrm{H}$ decoupled; $d \mathrm{H}$ decoupled; e H decoupled, line narrowed

Fig. 2
${ }^{11} \mathrm{~B}$ COSY spectrum of $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$
wise from the o-carborane. According to this presumption, the degradation of 8,9 , $10,12-\mathrm{D}_{4}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{8}(\mathrm{Vb})$ should afford the $\mathrm{C}_{2} \mathrm{~B}_{7}$ skeleton deuterated at the boron vertices, corresponding to signals A, B and G . At variance with this presumption, only deuteration on boron vertices, corresponding to the signals A and G was observed (Table I). The surprising absence of deuterium in the position corresponding to the signal B was found not to be a result of an additional H / D exchange as the asymmetrical $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane itself exchanged hydrogen atoms in $\mathrm{D}_{3} \mathrm{O}^{+}$at the μ and endo-H positions only (see $I V e$ (later reinterpreted as $I e$), leaving the signal B unchanged.

Similar unexpected results were obtained when starting from the $\left[\mu, 9,11-D_{3}-7,8-\right.$ $\left.-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]^{-}$(VIc) and $\left[\mu, 1,5,6,9,10,11-\mathrm{D}_{7}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{5}\right]^{-}$(VId) anions which afforded under the above degradation conditions compounds held to be carboranes $I V c$ and $I V d$ with deuterium in the positions corresponding to the signals F , and A , F and G , respectively. The exchange of $\mathrm{D}_{3} \mathrm{O}^{+}$for $\mathrm{H}_{3} \mathrm{O}^{+}$medium in the $\mathrm{CH}_{2} \mathrm{O}$ degradation resulted in the latter case only in an additional introduction of deuterium into the μ and endo-H positions, affording compound IVe. In no case, however, deuterium was observed in the position corresponding to the signal B .

From the above observations we judged that the absence of deuterium in the B position was caused by a selective re-exchange by means of $\mathrm{CH}_{2} \mathrm{O}$ of hydrogen for the deuterium already present at the position corresponding to the signal B . The substitution of $\mathrm{CD}_{2} \mathrm{O}$ for $\mathrm{CH}_{2} \mathrm{O}$ supported this idea as the $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane $I V f$, with the deuterium in the B position, was obtained. This result, together with the percepted presence of one $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge and two individual CH signals, were fully compatible with the structure $I V$, which was held to be a proven one, and the communication was almost ready to be published.

To complete the NMR characteristics, the ${ }^{13} \mathrm{C}$ NMR spectrum of the asymmetrical $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane was measured in CDCl_{3}. Surprisingly, instead of two expected CH doublets, one broad CH doublet at 29.2 ppm and one sharp CH_{2} triplet at 11.02 ppm were found ${ }^{20}$. The simultaneous presence of the BH_{2} and CH_{2} vertices indicates clearly that the $\mathrm{C}_{2} \mathrm{~B}_{7}$ compound does not belong to the nido but to the arachno series and thus it must have the $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ formula. The new formula was fully confirmed by remeasuring the ${ }^{1} \mathrm{H}$ NMR spectra in several solvents. These spectra, in contrast to that in CS_{2} (see p . 2742) revealed two CH signals of intensity 1 and 2, respectively ($\mathrm{CDCl}_{3}: 2 \cdot 15,1 \cdot 60 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: 1 \cdot 96,0.44 \mathrm{ppm}$), and one broad $\mathrm{B}-\mathrm{H}-\mathrm{B}$ signal $\left(\mathrm{CDCl}_{3}:-1.32 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}:-2.15 \mathrm{ppm}\right)$ which in $\mathrm{C}_{6} \mathrm{D}_{6}$ was fully separated from the BH quartets and showed the presence of two overlapped $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridges. The mass spectra of the carborane I were also remeasured using three techniques. The results (EI (70 eV): $m / z 113, \mathrm{M}-1$; CI: $m / z 115, \mathrm{M}+1$; NICI: $m / z 114$) were consistent with the ${ }^{12} \mathrm{C}_{2}{ }^{11} \mathrm{~B}_{7}{ }^{1} \mathrm{H}_{13}$ formula.

On the basis of these results, the arachno structure I with $\mathrm{BH}_{2}, \mathrm{CH}_{2}$ and CH vertices and two hydrogen bridges was proposed. The re-assignment of signals as

VI
Vla, $7.8-\mathrm{C}_{2} \mathrm{~B}_{\mathrm{g}} \mathrm{H}_{12}^{(-)}$
Vib, 1,5,6,10- $\mathrm{D}_{4}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}^{-}$
Vic. $\mu, 9,11-\mathrm{D}_{3} 7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}^{(-)}$
V/d, $\mu, 1,5,6,9,10,11-D_{7}-7,8-C_{2} B_{9} H_{5}^{(-)}$

1
la, 4.5-C $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{\mathrm{i} 3}$
10, $\mu, \mu_{1}^{\prime}, 3,6-$ endo- $\mathrm{D}_{4}-4,5-\mathrm{C}_{2} \mathrm{~B}_{2} \mathrm{H}_{9}$
1c, $\mu, \mu, 6-$ endo, $6-$ exo- $\mathrm{D}_{4}-4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{3}$
ld , $\mu, \mu_{1}^{\prime}, 3,6-$ endo, 6-exo,7,8- $\mathrm{D}_{7}-4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{0}$
le, $\mu, \mu, \mu_{1}^{\prime} \sigma$-endo- $\mathrm{D}_{3}-4.5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{10}$
If , $\mu_{1} \mu_{1}, 36$-endo 6 -exo $, 7,8,9-D_{8}-4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{5}$
-.-.-- missing interaction
......... assumed connection

Scheme 2
shown in the Scheme 2, formula I, gave far better agreement with the ${ }^{11} B-{ }^{11} B$ 2 D NMR spectrum (Fig. 2) in which only the presence of the crosspeak D-E from ten expected ones was now uncertain. The assignment of the signal G to $B(3)$ and of signal B to $B(9)$ is in agreement with our NMR rules, i.e. the former resonating in the highest field, is opposite to the $B-H-B$ bridge ${ }^{16-18}$ and the latter is significantly $\mu \mathrm{H}$-splitted due to the adjacent carbon vertex ${ }^{19}$. The T_{1} relaxation time measurements bring further confirmation of the correctness of the signal assignments. Past experience indicated that in a given molecule, the boron nucleus with the most symmetrical electric field has the longest T_{1} time ${ }^{21,22}$ and, vice versa, the boron vertex with the greatest electric field gradient, due to the presence of heteroatom(s), should have the shortest T_{1} time ${ }^{23}$. Of the three boron atoms of connectivity five $(\mathrm{B}(1), \mathrm{B}(2), \mathrm{B}(3))$, the greatest T_{1} value is expected for $\mathrm{B}(3)$, surrounded by five boron atoms, and the shortest one for $\mathrm{B}(1)$ which has two positively charged carbon atoms in its vicinity. These expectations are in agreement with the found T_{1} values (Table I).

A new ${ }^{11} \mathrm{~B}$ NMR measurement at 128.4 MHz of the carborane $I b$ prepared from $8,9,10,12-\mathrm{D}_{4}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{8}(V I b)$ has shown that besides deuteration in the positions corresponding to signals A and G a partial deuteration of the boron belonging to the signal C can also be recognized in the CDE overlapped area.

These results have not only confirmed the real structure of the asymmetrical $\mathrm{C}_{2} \mathrm{~B}_{7}$ carborane but they also have substantiated the absence of deuterium in the B position of the $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ carborane.

The carborane I now has a conventional nine vertex arachno framework with $2 n+6=24$ skeletal electrons (see Refs ${ }^{24,25}$) and with two vicinal hydrogen bridges, one BH_{2} group and adjacent $\mathrm{CH}-\mathrm{CH}_{2}$ vertices within the open hexagonal face of $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$, thus being an isoskeletal and isotopological counterpart of the long known 4,6- $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ carborane ${ }^{26}$.

Taking into account the arachno structure of $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$, some properties which appeared curious for nido $-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$ carborane are now understandable, namely: a) a resistance to the addition of sodium ${ }^{23}$ or of Lewis bases as diethyl ether or tetrahydrofuran ${ }^{1,3} ; b$) halogenation to arachno-4,5- $\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{12} \mathrm{X}$ derivatives ${ }^{27} ;$ c) simultaneous incorporation of two $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Co}$ vertices into the molecule ${ }^{8}$, and d) the presence of the BH_{2} vertex in the molecule.

The arachno character of the carborane I, appearing as a minor component in the reaction of $\mathrm{B}_{8} \mathrm{H}_{12}$ with acetylene, suggests its origin via the hydrolytic elimination of one vertex from the primary adduct by traces of water (see Scheme 3) according

Scheme 3
to the general mechanism ${ }^{28}$ rather than via the elimination of the BH_{3} fragment ${ }^{1.3}$. The same pathway, followed by a dehydrogenation, can be considered in the formation of $1,2-\left(\mathrm{CH}_{3}\right)_{2}-1,2-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{9}(I I)$ from $\mathrm{B}_{8} \mathrm{H}_{12}$ and dimethylacetylene. The reason for the subsequent contraction to the nido skeleton $I I$ is seen in the tendency towards cyclization evoked by two methyl groups. A similar tendency is observed in organic chemistry ${ }^{29}$.

It is clear that the ${ }^{11} \mathrm{~B}$ NMR analysis alone, inclusive of a ${ }^{11} \mathrm{~B}-{ }^{11} \mathrm{~B}$ two-dimmensional NMR study, though combined with a deuterium labelling, afforded results
which supported the earlier incorrect structures. Only ${ }^{1} \mathrm{H}$ NMR measurements in different solvents and especially, the often neglected ${ }^{13} \mathrm{C}$ NMR spectra brought unambiguous evidence that the $\mathrm{C}_{2} \mathrm{~B}_{7}$ species, for a long time considered to be nido $-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{11}$, is in reality the arachno- $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ carborane. This paper should therefore serve also as a warning to boron chemists, solving the structures of asymmetrical carboranes and heteroboranes by means of NMR methods (see e.g. an incorrect assignment ${ }^{12}$ of signals with $4-\mathrm{CoC}_{5} \mathrm{H}_{5}-2,3-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$). In such cases, an ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ two-dimmensional NMR study and/or a good agreement with all pertinent rules and experiences ${ }^{30}$ are necessary.

EXPERIMENTAL

NMR spectra were measured using a Varian XL-200 NMR spectrometer (${ }^{11} \mathrm{~B}: ~ 64 \cdot 184 \mathrm{MHz}$, ${ }^{1} \mathrm{H}: 200 \mathrm{MHz},{ }^{13} \mathrm{C}: 50.309 \mathrm{MHz}$). The locked spectra of I were recorded in CDCl_{3}, those of VI in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$. Referencing was to an external $\mathrm{BF}_{3} . \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ for ${ }^{11} \mathrm{~B}$ and internal tetramethylsilane for H.

For $2 D^{11} B-{ }^{11} B$ spectra, the COSY pulse sequence was used to generate the t_{1}, t_{2} matrix (512×512). The spectra were obtained utilizing standard Varian XL-200 soft ware 'HOMCOR'. Acquisition parameters: acquisition time AT 0.047 s , relaxation delay D1 0.2 s , sweep width SW 5000 Hz , number of transitions NT 32 . The resulting COSY spectra were line-narrowed (using resolution enhancement RE 0.003 and the apodization function AF 0.01), symmetrized, and recorded using a Nicolet Zeta 1553 plotter.

The T_{1} values were measured with accuracy $\pm 10 \%$ using the $180^{\circ}-\tau-90^{\circ}$ pulse sequence at $23^{\circ} \mathrm{C}$. Ten values from 1 to 200 ms were used. For differentiating the overlapped signals, intensities of selected peaks from the line-narrowed spectra (RE 0.003 , AF 0.012) were analyzed by the exporential least-squares routine.

Preparation of $\left[1,5,6,10-\mathrm{D}_{4}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\right]^{-}$(VIb)
To a solution of $3 \cdot 7 \mathrm{~g}$ (25 mmol) of $8,9,10,12-\mathrm{D}_{4}-1,2-\mathrm{C}_{2} \mathrm{~B}_{10} \mathrm{H}_{8}$ in 50 ml of methanol, solid KOH $(8.4 \mathrm{~g}, 150 \mathrm{mmol})$ was added. The mixture was refluxed for 4 h , cooled and 50 ml of water was added. Methanol was evaporated in vacuo and the remaining aqueous solution was extracted with diethyl ether ($2 \times 30 \mathrm{ml}$). The solid remnant was dissolved in 30 ml of water, the solution was filtered and $6.5 \mathrm{~g}(25 \mathrm{mmol})$ of CsI was added to the clear filtrate. The separated precipitate was collected by filtration, washed with a small amount of cold water and recrystallized from 50 ml of hot water. The yield was $6.0 \mathrm{~g}(89 \%)$ of VIb. ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right):-11.30 \mathrm{~d}$ (B-9, B-11); -16.90 s (B-5, B-6); $-17.73 \mathrm{~d}(\mathrm{~B}-3) ;-22.30 \mathrm{~d}$ (B-2, B-4); $-33.35 \mathrm{~s}(\mathrm{~B}-10) ;-38.22 \mathrm{~s}$ (B-1).

Preparation of $\left[\mu, 9,11-\mathrm{D}_{3}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]^{-} \mathrm{K}^{+}(V I c)$
A 1 m solution (20 ml) of $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right] \mathrm{K}$ ref. ${ }^{31}$ was evaporated to dryness in vacuo. The solid remnant was dissolved in 20 ml of $6 \mathrm{~m}-\mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}$. The solution was set aside for 8 hours at room temperature and then it was used for further reactions. ${ }^{11} \mathrm{~B} \mathrm{NMR}$ of the dried $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+}$ $\left[\mu, 9,11-\mathrm{D}_{3}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right]^{-}$precipitate $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right):-11.37 \mathrm{~s}(\mathrm{~B}-9, \mathrm{~B}-11) ;-16.85 \mathrm{~d}(\mathrm{~B}-5, \mathrm{~B}-6)$; $-17.73 \mathrm{~d}(\mathrm{~B}-3) ;-22.27 \mathrm{~d}(\mathrm{~B}-2, \mathrm{~B}-4) ;-33.17 \mathrm{~d}(\mathrm{~B}-10) ;-37.96 \mathrm{~d}(\mathrm{~B}-1)$.

Preparation of $\left[\mu, 1,5,6,9,10,11-\mathrm{D}_{7}-7,8 \cdot \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{5}\right]^{-}$(VId)
The solid remnant prepared as in VIc, was dissolved in 30 ml of $6 \mathrm{~m}-\mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}$, and the solution was refluxed for 8 h in an inert atmosphere. The final solution was used for the preparation of Id. A small sample was precipitated in the form of $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}^{+}\left[\mu, 1,5,6,9,10,11-\mathrm{D}_{7}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{5}\right]^{-}$, and dried in vacuo. ${ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right):-11.45 \mathrm{~s}$ (B-9, B-11); -16.91 s (B-5, B-6); $-17.73 \mathrm{~d}(\mathrm{~B}-3) ;-22.32 \mathrm{~d}(\mathrm{~B}-2, \mathrm{~B}-4) ;-33.36 \mathrm{~s}(\mathrm{~B}-10) ;-38.23 \mathrm{~s}$ (B-1).

Degradation of the deuterated $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12}\right]^{-}$anions VI b-VId to the deuterated $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ carboranes $I b$-Id and If

An 1 m aqueous solution of the $\left[7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{12-\mathrm{x}} \mathrm{D}_{\mathrm{x}}\right]^{-}$salt (15 ml) was overlayered with 50 ml of hexane, and diluted $\mathrm{HCl}(1: 3,30 \mathrm{ml})$ or $6 \mathrm{~m}-\mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}(30 \mathrm{ml})$ was added. To this mixture, 6 ml of $38 \% \mathrm{CH}_{2} \mathrm{O}$ or $\mathrm{CD}_{2} \mathrm{O}$ in $\mathrm{D}_{2} \mathrm{O}$ was added and stirring was continued for further 4 h . The hexare layer was then separated, dried over CaCl_{2} and filtered. The clear filtrate was evaporated in vacuo and a solid remnant was sublimed at $60^{\circ} / 1 \cdot 3 \mathrm{~Pa}$. Yields $40-60 \%$. ${ }^{11} \mathrm{~B}$ NMR of $I b-I d$, If see in Table I.

$$
\text { Preparation of } \mu, \mu^{\prime}, 6 \text {-endo }-\mathrm{D}_{3}-4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{10} \text { (Ie) }
$$

A solution of $0.5 \mathrm{~g}(4.4 \mathrm{mmol})$ of $4,5-\mathrm{C}_{2} \mathrm{~B}_{7} \mathrm{H}_{13}$ in 30 ml of hexane was underlayered with 30 ml of $6 \mathrm{~m}-\mathrm{DCl}$ in $\mathrm{D}_{2} \mathrm{O}$ and the mixture obtained was stirred for 4 h in an inert atmosphere at room temperature. The hexane layer was then separated, dried over CaCl_{2}, filtered, hexane was evaporated in vacuo and the solid residue was sublimed at $60^{\circ} / 1.3 \mathrm{~Pa}$. Yield $0.45 \mathrm{~g}(90 \%)$ of Ie . ${ }^{11} \mathrm{~B} \mathrm{NMR}$ in CDCl_{3} of $I e$ see in Table I.

Preparation of $\mathrm{CD}_{2} \mathrm{O}$

Paraformaldehyde (9.0 g 0.3 mol) was refluxed in 50 ml of $6 \mathrm{~m}-\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ for 48 h in an inert atmosphere, the resulting mixture was cooled to room temperature and filtered. The obtained solution was used for the preparation of $I f$ in the above degradation.

The authors wish to thank Dr J. Koruna for the mass spectral measurements, and Drs P. Trška and P. Pech for the ${ }^{11} \mathrm{~B}$ NMR spectra at 128 MHz .

REFERENCES

1. Ristz R. R.: Thesis. Indiana University, Bloomington, Indiana (U.S.A.) 1971.
2. Rietz R. R., Schaeffer R.: J. Am. Chem. Soc. 93, 1265 (1971).
3. Rietz R. R., Schaeffer R.: J. Am. Chem. Soc. 95, 6254 (1973).
4. Huffman J. C., Streib W. E.: J. Chem. Soc., Chem. Commun. 1972, 665.
5. Pleš̌k J., Heřmánek S.: Pure Appl. Chem. 39, 431 (1974).
6. Williams R. E.: Adv. Inorg. Chem. and Radiochem. 18, 67 (1976).
7. Colquhoun H. M., Greenhough T. J., Wallbridge M. G. H., Heřmánek S., Plešek J.: J. Chem. Soc., Dalton Trans. 1978, 944.
8. Plešek J., Štíbr B., Heřmánek S.: Chem. Ind. (London) 1980, 626.
9. Štíbr B., Plešek J., Heřmánek S.: Inorg. Synth. 22, 237 (1983).
10. Štíbr B., Heřmánek S., Plešek J., Baše K.: Chem. Ind. (London) 1980, 468.
11. Barker G. K., Garcia M. P., Green M., Pain G. N., Stone F. G. A., Jones S. K. R., Welch A. J.: J. Chem. Soc., Chem. Commun. 1981, 652 .
12. Briguglio J. J., Sneddon L. G.: Organometallics 5, 327 (1986).
13. Venable T., Hutton W., Grimes R. N.: J. Am. Chem. Soc. 104, 4719 (1982); 106, 29 (1984).
14. Howarth O. W., Jasztal M. J., Taylor J. G., Wallbridge M. F. G.: Polyhedron 1985, 1461.
15. Jacobsen G. B., Meina D. G., Morris J. H., Andrews S. J., Reed D., Welch A. J., Gaines D. F.: J. Chem. Soc., Dalton Trans. 1985, 1645.
16. Heřmánek S., Fusek J., Štíbr B., Plešek J., Jelínek T.: Polyhedron 1986, 1873.
17. Heřmánek S., Plešek J.: Z. Anorg. Allg. Chem. 409, 115 (1974).
18. Heřmánek S., Plešek J., Stíbr B.: 3rd International Meeting on Boron Chemistry, July 5-9, 1976, Munich and Ettal, West Germany; Abstr. No 52.
19. Plešek J., Štíbr B., Heřmánek S.: Chem. Ind. (London) 1974, 662.
20. Heřmánek S., Jelínek T., Plešek J., Štíbr B., Fusek J.: J. Chem. Soc., Chem. Commun. 1987, 927.
21. Weiss R., Grimes R. N.: J. Am. Chem. Soc. 99, 1036 (1977).
22. Wright W. F., Garber A. R., Todd L. J.: J. Magn. Reson. 30, 595 (1978).
23. Heřmánek S., Jelínek T., Fusek J.: Unpublished results.
24. Wade K.: Adv. Inorg. Chem. Radiochem. 18, 1 (1976).
25. Rudolph R. W., Pretzer W. R.: Inorg. Chem. 11, 1974 (1972).
26. Tebbe F. N., Garrett P. M., Hawthorne M. F.: J. Am. Chem. Soc. 88, 607 (1966).
27. Jelinek T., Štíbr B., Mareš F., Plešek J., Heřmánek S.: Polyhedron 6, 1737 (1987).
28. Heřmánek S., Plešek J., Stíbr B., Hanousek F.: Collect. Czech. Chem. Commun. 33, 2177 (1968).
29. Hückel W.: Theqretische Grundlagen der Organischen Chemie, Vol. 2, 6. and 7. ed., p. 667. Akademische Verlagsgesellschaft, Leipzig 1954.
30. Heřmánek S., Jelínek T., Plєšek J., Štíbr B., Fusek J., Mareš F. in: Boron Chemistry (S. Heřmánek, Ed.). 26. World Scientific, Singapcre 1987.
31. Plešek J., Heĭmánek S., Stíbr B.: Incrg. Synth. 22, 231 (1983).

Translated by the author (S.H.).

[^0]: Collection Czechoslovak Chem. Commun. (Vol. 53) (1988)

